1. Waterhouse RL Jr, Van Neste L, Moses KA, Barnswell C, Silberstein JL, Jalkut M, Tutrone R, Sylora J, Anglade R, Murdock M, Shiffman Z, Vandenberg T, Shah N, Carter M, Krispin M, Groskopf J, Van Criekinge W. Evaluation of an Epigenetic Assay for Predicting Repeat Prostate Biopsy Outcome in African American Men. Urology. 2018 Apr 13. pii: S0090-4295(18)30315-7. doi: 10.1016/j.urology.2018.04.001.
  2. Van Neste L, Groskopf J, Grizzle WE, Adams GW, DeGuenther MS, Kolettis PN, Bryant JE, Kearney GP, Kearney MC, Van Criekinge W, and Gaston SM. Epigenetic Risk Score Improves Prostate Cancer Risk Assessment. The Prostate. 2017 Sep;177(12):1259-64.
  3. Van Neste L, Partin AW, Stewart GD, Epstein JI, Harrison DJ, and Van Criekinge W. Risk Score Predicts High-Grade Prostate Cancer in DNA-Methylation Positive, Histopathologically Negative Biopsies. The Prostate. 2016 Sep;176(12):1078-87.
  4. Maldonado L, Brait M, Layo M, Sullenberger L, Wang K, Pekoe SB, Rosenbaum E, Howard R, Toubajo A, Albadine R, Netto GJ, Hoque MO, Platz EA, Sidrasky D. GSTP1 Promoter Methylation is Associated with Recurrence in Early Stage Prostate Cancer. The Joumal of Urology.  2014 Nov;192:1-7.
  5. Partin AW, Van Neste L, Klein EA, Marks LS, Gee JR, Troyer DA, Rieger-Christ K, Jones JS, Magi-Galluzzi C, Mangold LA, Track BJ, Lance RS, Bigley JW, Van Criekinge W, Epstein JI. Clinical Validation of an Epigenetic Assay to Predict Negative Histopathological Results in Repeat Prostate Biopsies. The Joumal of Urology. 2014 Oct;192(4):1081-7.
  6. Wojno KJ, Costa FJ, Cornell RJ, Small JD, Pasin E, Van Criekinge W, Bigley JW, Van Neste L. Reduced rate of Repeated Biopsies Observed in ConfirmMDx Clinical Utility Field Study. Am Health Drug Benefits. 2014 May;7(3):129-134.
  7. La Rosa FG, Jones C, Arangua P, Crawford ED, Van Neste L. Finding Occult Prostatic Cancer: The Value of Transperineal Mapping Biopsies and Epigenetic Assays. Joumal of Oncopathology. 2014 March;2.
  8. Crawford ED, Ventii K, Shore ND. New bio-markers in prostate cancer. Oncology (vVilliston Park). 2014 Feb;28(2):135-42.
  9. Van Neste L, Herman JG, Van Criekinge W. Improving Prostate Cancer Management: Clinical Lltility of Epigenetic for Diagnosis and Prognosis. The Joumal of Oncopathology. 2013 Apr;1 :29-32.
  10. Stewart GD, Van Neste L, Delvenne P, Delree P, Delga A, McNeil! SA, O’Donnell M, Clark J, Van Criekinge W, Bigley J, Harrison JD. Clinical Utility of an Epigenetic Assay to Detect Occult Prostate Cancer in Histopathologically Negative Biopsies: Results of the MATLOC Study. Joumal of Urology. 2013 Mar;189(3):1110-6.
  11. Aubry W, Lieberthal R, Willis A, Bagley G, Willis S, Layton A. Budget Impact Model: Epigenetic Assay Can Help Avoid Unnecessary Repeated Prostate Biopsies and Reduce Healthcare Spending. Am Health Drug Benefits. 2013 Jan-Feb;6(1):15-24.
  12. Van Neste L, Bigley J, Toll A, Otto G, Clark J, Delree P, Van Criekinge W, Epstein, JI. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection. BMC Urol. 2012;12:16.
  13. Jeronimo C, Usadel H, Henrique R, Oliveira J, Lopes C, Nelson WG, Sidransky D. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer. 2001 Nov 21 ;93(22):1747-52.
  14. Trujillo KA, Jones AC, Griggith JK, Bisoffi M. Markers of Field Cancerization: Proposed Clinical Applications in Prostate Biopsies. Prostate Cancer. 2012;2012:302894.
  15. Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, and Van Criekinge V. The Epigenetic promise for prostate cancer diagnosis. Prostate. 2012 Aug 1 ;72(11):1248-61.
  16. Track BJ, Brotzman MJ, Mangold LA, Bigley JW, Epstein JI, Mcleod D, Klein EA, Jones JS, Wang S, McAskill T, Mehorta J, Raghavan B, Partin AW. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU. Int. 2012; Jul;110(1):56-62.
  17. Devaney J, Stirzaker C, Qu W, et al. Epigenetic deregulation across chromosome 2q14.2 differentiates normal from prostate cancer and provides a regional panel of novel DNA methylation cancer biomarkers. Cancer Epidemiol Biomarkers Prev. 2011 Jan;20(1 ): 148-59.
  18. Steiner I, Jung K, Schatz P, Horns T. Wittschieber D, Lein M, Dietel M, Erbersdobler A. Gene Promoter Methylation and Its Potential Relevance in Early Prostate Cancer Diagnosis. Pathobio/ogy. 2010;77(5): 260-6.
  19. Troyer DA, Lucia MS, de BrLiine AP, et al. Prostate Cancer Detected by Methylated Gene Markers in Histopathologically Cancer-Negative Tissues from Men with Subsequent Positive Biopsies. Cancer Epidemiol Biomarkers Prev. 2009 Oct; 18(10):2717 -22.
  20. Zon G, Barker MA, Kaur P, et al. Formamide as a denaturant for bisulfite conversion of genomic DNA: Bisulfite sequencing of the GSTPi and RARbeta2 genes of 43 formalin-fixed paraffin-embedded prostate cancer specimens. Anal. Biochem. 2009 Sep 15;392(2):117-25.
  21. Ahmed H, Cappello F, Rodolico V, Vasta GR. Evidence of Heavy Methylation in the Galectin 3 Promoter in Early Stages of Prostate Adenocarcinoma: Development and Validation of a Methylated Marker for Early Diagnosis of Prostate Cancer. Transl. Oneal. 2009 Aug 18;2(3):146-156.
  22. Mehrotra J, Varde S, Wang H, et al. Quantitative, spatial resolution of the epigenetic field effect in prostate cancer. Prostate. 2008 Feb 1 ;68(2):152-60.
  23. Periy AS, Loftus B, Moroose R, et al. In silica mining identifies IGFBP3 as a novel target of methylation in prostate cancer. Br J Cancer. 2007 May 21;96(10):1587-1594.
  24. Eilers T, Machtens S, Tezval H, et al. Prospective diagnostic efficiency of biopsy washing DNA GSTP1 island hypermethylation for detection of adenocarcinoma of the prostate. Prostate. 2007;67:757–63.
  25. Bastian PJ, Ellinger J, Heukamp LC, et al. Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy. Eur. Urol. 2007 Mar;51(3):665-74.
  26. Cho NY, Kim BH, Choi M, et al. Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol. 2007 Feb;211 (3):269-77.
  27. Vanaja DK, Ballman KV Morlan BW, et al. PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. C/in. Cancer Res. 2006 Feb 15;12(4):1128-36.
  28. Yegnasubramanian S, Lin X, Haffner MC, et al. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res. 2006 Feb 9;34(3):e19.
  29. Henrique R, Jer6nimo C, Teixeira MR, et al. Epigenetic Heterogeneity of High-Grade Prostatic Prostate Carcinogenesis lntraepithelial Neoplasia: Clues for Clonal Progression in Prostate Carcinogenesis. Mo/. Cancer Res. 2006 Jan;4(1):1-8.
  30. Enokida H, Shiina H, Urakami S, et al. Multigene methylation analysis for detection and staging of prostate cancer. Clin. Cancer Res. 2005 Sep 15;11 (18):6582-8.
  31. Bastian PJ, Palapattu GS, Lin X, et al. Preoperative Serum DNA GSTP1 CpG Island Hypermethylation and the Risk of Early Prostate-Specific Antigen Recurrence Following Radical Prostatectomy. C/in. Cancer Res. 2005 Jun 1 ;11 (11):4037-43.
  32. Jeronimo C, Varzim G, Henrique R, et al. 1105V Polymorphism and Promoter Methylation of the GSTP1 Gene in Prostate Adenocarcinoma. Cancer Epidemiol Biomarker Prev. 2005 May;11(5):445-50.
  33. Jeronimo C, Henrique R, Hoque MO, et al. A Quantitative Promoter Methylation Profile of Prostate Cancer. Clin. Cancer Res. 2004 Dec 15;10(24):8472-8.
  34. Bernardini S, Miano R, lori R, et al. Hypermethylation of the CpG islands in the promoter region of the GST.P1 gene in prostate cancer: a useful diagnostic and prognostic marker? Clin. Chim. Acta. 2004 Dec;350(1-2):181-8.
  35. Flori AR, Steinhoff C, Muller M, et al. Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer 2004: Aug 31 ;91 (5):985-94.
  36. Tokumaru Y, Harden SV, Sun DI, et al. Optimal Use of a Panel of Methylation Markers with GSTP1 Hypermethylation in the Diagnosis of Prostate Adenocarcinoma. Clin. Cancer Res. 2004 Aug 15; 10(16): 5518-22.
  37. Zhou M, Tokumaru Y, Sidransky D, Epstein JI. Quantitative GSTP1 Methylation Levels Correlate with Gleason Grade and Tumor Volume in Prostate Needle Biopsies. J Ural. 2004 Jun;171 (6 Pt 1 ):2195-8.
  38. Woodson K, Hanson J, Tangrea J: A survey of gene-specific methylation in human prostate cancer among black and white men. Cancer Lett. 2004 Mar 18;205(2):181-8.
  39. Yegnasubramanian S, Kowalski J, Gonzalgo ML, et al. Hypermethylation of CpG Islands in Primary and Metastatic Human Prostate Cancer. Cancer Res. 2004 Mar 15;64(6):1975-86.
  40. Kang GH, Lee S, Lee HJ, et al. Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol. 2004 Feb;202(2):233-40.
  41. Harden SV, Sanderson H, Goodman SN, et al. Quantitative GST-P1 methylation and the detection of prostate adenocarcinoma in sextant biopsies. J. Natl. Cancer Inst. 2003 Nov 5;95(21):1634-7.
  42. Nakayama M, Bennett CJ, Hicks JL, et al. Hypermethylation of the human glutathione S-transferase-pi gene (GST-P1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am. J. Pathol. 2003 Sept;163(3):923-33.
  43. Yamanaka M, Watanabe M, Yamada Y, et al. Altered Methylation of Multiple Genes in Carcinogenesis of The Prostate. Int. J. Cancer. 2003 Sept 1 ;106(3):382-7.
  44. Woodson K, Hayes R, Wideroff L, et al. Hypermethylation of GST-P1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate. 2003 May 15;55(3):199-205.
  45. Harden SV, Guo Z, Epstein JI, et al. Quantitative GST-P1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J. Urol. 2003 Mar;169(3):1138-42.
  46. Konishi N, Nakamura M, Kishi M, et al. DNA hypermethylation status of multiple genes in prostate adenocarcinomas. Jpn. J. Cancer Res. 2002 Jul;93(7):767-73.
  47. Chu DC, Chuang CK, Fu JB, et al. The use of real-time quantitative polymerase chain reaction to detect hypermethylation of the CpG islands in the promoter region flanking the GST-Pl gene to diagnose prostate carcinoma. J. Urol. 2002 Apr;167(4):1854-8.
  48. Goessl C, Muller M, Heicappell R, et al.: Methylation-specific PCR for detection of neoplastic DNA in biopsy washings. J Pathol. 2002 Mar;196(3):331-4.
  49. Maruyama R, Toyooka S, Toyooka KO, et al. Aberrant Promoter Methylation Profile of Prostate Cancers and Its Relationship to Clinicopathological Features. Clin. Cancer Res. 2002 Feb;8(2):514-9.
  50. Un X, Tascilar M, Lee WH, et al. GSTP1 CpG Island Hypermethylation Is Responsible for the Absence of GSTP1 Expression in Human Prostate Cancer Cells. Am. J. Pathol. 2001 Nov; 159(5):1815-26.
  51. Jeronimo C, Usadel H, Henrique R, et al. Quantitation of GST-P1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J. Natl. Cancer. 2001 Nov 21; 93(22):1747-52.
  52. Goessl C, Krause H, Muller M, et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res. 2000 Nov 1; (60)21 :5941-5.
  53. Santourlidis S, Florl A, Ackermann R, et al. High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate. 1999 May 15;39(3):166-7 4.
  54. Brooks JD, Weinstein M, Lin X, et al. CG island methylation changes near the GST-P7 gene in prostatic intraepithelial neoplasia. CancerEpidemiol Biomarkers Prev. 1998 Jun;7(6):531-6.
  55. Lee WH, Isaacs WB, Bova GS, et al. CG island methylation changes near the GST-P7 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol Biomarkers Prev. 1997 Jun;6(6):443-50.
  56. Lee WH, Morton RA, Epstein JI, et al. Cytidine methylation of regulatory sequences near the n-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl. Acad. Sci. USA. 1994 Nov 22;91(24):11733-7.